Abstract

AbstractThe Innsbruck Atmospheric Observatory (IAO) aims to investigate atmospheric chemistry, micrometeorology, and mountain meteorology in a synergistic fashion within an urban setting. A new measurement supersite has been established in order to study processes affecting the exchange of momentum, energy, trace gases, and aerosols in an Alpine urban environment. Various long-term continuous measurements are augmented by frequent focused research campaigns with state-of-the-art instrumentation, linking different classes of data and addressing significant gaps in scientific data availability for urban environments. Current activities seek to address research objectives related to the urban heat island, trace gas emissions, the influence of foehn on air quality, and the atmospheric distribution of trace gases and aerosols in a mountainous city. We present initial results from long-term operations and first highlights from two intensive operational phases, showing that 1) the exchange of greenhouse gas emissions is dominated by anthropogenic activities and is driven by location-specific venting of street canyon air; 2) foehn events significantly perturb the photostationary state indicative for an extensive and rapid airmass exchange of the valley atmosphere; 3) the temporal distribution of pollutants is often decoupled from their emissions and primarily modulated by mountain boundary layer dynamics; 4) we can detect a large number of volatile chemical products in the urban atmosphere, which can be used to fingerprint anthropogenic emission sources; and 5) the first urban carbonyl sulfide (COS) flux measurements point toward anthropogenic emission sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call