Abstract

The thermal transport of monolayer MoS2, grown by chemical vapor deposition (CVD) method, was studied in this work. A novel approach was developed to transfer monolayer MoS2 onto suspended microelectrothermal system device, where a nano-manipulator in a scanning electron microscope was employed to accomplish the feat. This nano-manipulator-assisted transferring gives a high sample yield with relatively good sample quality compared to the traditional wet/dry transfer methods. Temperature-dependent thermal conductivity of monolayer MoS2 was measured by suspended-pads thermal bridge technique, with thermal conductivity value slightly lower than the exfoliated samples due to the phonon-defects scattering for CVD grown samples. Further extension of the current transfer method was demonstrated on few-layer graphite, where suspended graphite flakes that were free of surface ripples and with high thermal conductance were shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call