Abstract

The thermal environment in modern cities has become potentially unfavorable and harmful for its residents, as a result of urbanization and industrialization. Exposure to these extreme thermal conditions increases the heat stress of people in cities considerably. In this context, the present study aims to investigate the urban thermal environment of the large coastal metropolitan city of Athens, in a human-biometeorologically significant way, utilizing the thermo-physiological assessment index PET. The analysis was based on three hour measurements derived from three-year datasets (2006–2009), at 12 monitoring sites located in the urban complex of Athens, on its boundaries and beyond them. The differences of PET values have been investigated in order to attribute urban and exurban thermal characteristics to the considered sites. The frequency and spatial distribution of PET as well as the urban/rural differences of PET have also been analyzed. Finally, a trend analysis has been applied in order to detect possible PET trends by employing long-term recording data (1985–2008). In terms of thermal human-biometeorological conditions, the analysis reveals that among the considered stations, those located inside the urban complex and the industrialized area present urban thermal characteristics, regardless the fact that they are installed either in a park and on a hill or at an open field. The spatial distribution of PET, at 0200 LST, shows a difference of about 3 to 4°C, on the main axis of the city (SSW–NNE) in the summer period, while the difference exceeds 2.5°C in the winter period. In general, cooler (less warm) thermal perception is observed at the north/northeast sites of the city as well as at the areas beyond the eastern boundaries of it. The PET differences between urban and rural sites hold a positive sign, except of those at 0500 LST and at 0800 LST. The highest differences are noted at 1400 LST and the most intense of them is noticed in the summer period (exceeds 5°C). The trend analysis reveals statistically significant increasing heat stress for certain stations and months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.