Abstract
Traditionally, the overdispersion parameter ϕ is estimated by using Pearson’s lack of fit statistic X2or the Deviance statistic D, which do not perform well in the case of sparse data. This paper particularly focuses on an estimator ϕnew of overdispersion parameter which was proposed for sparse multinomial data. The estimator was derived on the basis of an assumption on the 3rd cumulant of the response variable.When the data comes from the Dirichlet-multinomial distribution ϕnew is known to have the lowest root mean squared error comparing to the other three estimators. In this paper the 1st to 3rd order raw moments of the finite mixture of Dirichlet-multinomial distributions are derived, which results in complicated mathematical expressions. Furthermore, it is found that the 3rd cumulant of this mixture does not satisfy the assumption which is considered in the derivation of ϕnew . Dhaka Univ. J. Sci. 69(2): 96-100, 2021 (July)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.