Abstract
Sodium lauryl ether sulfate (SLES) is a common anionic surfactant used in a large number of personal care products. Commercial products typically contain a distribution in the number of ethoxy groups; despite this, there is limited existing work studying the effect of the ethoxy groups on the phase formation and structure. This is particularly important for the effect the structure has on the viscosity, an important consideration for commercial products. Dissipative particle dynamics is used to simulate the full phase diagram of SLES in water, including both micellar and lyotropic liquid crystal phases. Phase transitions occur at locations which are in good agreement with experimental data, and we find that these boundaries can shift as a result of varying the number of ethoxy groups. Varying the ethoxy groups has a significant effect on the micellar shape and crystalline spacing, with a reduction leading to more nonspherical micelles and decreased periodic spacing of the hexagonal and lamellar phases. Finally, while typical commercial products contain a distribution of ethoxy groups, computational work tends to focus on simulations containing a single chain length. We show that it is valid to use monodisperse simulations to infer behavior about solutions with a polydisperse chain length, based on its mean molecular length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.