Abstract

The main purpose of this paper was to study the vertical settlement of offshore wind turbine (OWT) monopile support structures, where 5, 10, 15, and 20 MW OWT support structures were analyzed under power production, seismic, and tropical cyclone loads. Moreover, a t-z spring with shear and torsional degrees of freedom was developed to simulate the shear stress along the pile and soil surface under the combined effect of vertical loads and z-direction torsions. This t-z spring does not require excessive changes to the finite element program, where only a known factor is used to modify the traditional stiffness of the t-z spring. This paper, analyzing several kinds of OWT monopile foundations, indicates that the soil shear resistance may be less than the shear stress generated by the combination of vertical loads and torsions, which causes large vertical and rotational displacements resulting in the failure of monopile structures. This situation will be worse when the natural frequency of the first vertical-direction rotation is close to the integer multiples of the 3P frequency, which cannot be well-simulated using traditional t-z springs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.