Abstract

Pathological cardiac hypertrophy, which is a compensatory mechanism established to maintain cardiac function in response to neurohormonal or mechanical stresses, becomes maladaptive with time and frequently leads to heart failure. AMP-activated protein kinase (AMPK) has been extensively described in the literature to act as a break in cardiac hypertrophy development. Its anti-hypertrophic action mostly correlates with the inhibition of several important players of cardiac hypertrophy including protein synthesis and pro-hypertrophic gene expression pathways involving the transcription factor nuclear factor of activated T cells (NFAT) and the mitogen-activated protein kinases ERK1/2. In this chapter, we describe methodologies designed to evaluate cardiomyocyte hypertrophy and its major molecular mechanisms in response to AMPK activation. Two different compounds, AICAr and the biguanide phenformin, were used to promote AMPK activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call