Abstract

Photoelectrochemical water splitting is an actively developed area of hydrogen energy. It requires the use of highly-active photocatalysts, one of the most promising of which is a-Fe2O3 iron oxide. Among all iron oxides modifications, another phase f:-Fe2O3 can be potentially used as photocatalysts. However, this phase is difficult to be obtained by most of the known methods. In this work, the plasma dynamic synthesis method is used to obtain both of these phases to study their photocatalytic activity. For this, the synthesis system is improved to reach as highest yield of pointed phases as possible. The obtained nanosized powders with a predominant content of α- Fe2O3 and f:-Fe2O3 are studied with a three-electrode cell method. Both phases show the quite similar catalytic activity and a high stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.