Abstract

Clutter in echocardiography hinders the visualization of the heart and reduces the diagnostic value of the images. The detailed mechanisms that generate clutter are, however, not well understood. We present five different hypotheses for generation of clutter based on reverberation artifact with a focus on apical four-chamber view echocardiograms. We demonstrate the plausibility of our hypotheses by in vitro experiments and by comparing the results with in vivo recordings from four volunteers. The results show that clutter in echocardiography can be originated both at structures that lie in the ultrasound beam path and at those that are outside the imaging plane. We show that reverberations from echogenic structures outside the imaging plane can make clutter over the image if the ultrasound beam gets deflected out of its intended path by specular reflection at the ribs. Different clutter types in the in vivo examples show that the appearance of clutter varies, depending on the tissue from which it originates. The results of this work can be applied to improve clutter reduction techniques or to design ultrasound transducers that give higher quality cardiac images. The results can also help cardiologists have a better understanding of clutter in echocardiograms and acquire better images based on the type and the source of the clutter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call