Abstract

It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mechanical properties can be obtained through the pullout force and root slippage curve (F-S curve). About 120 Pinus tabulaeformis single roots whose diameters ranged from 1 mm to 10 mm divided into 6 groups based on different root embedment length (50 mm, 100 mm and 150 mm) and different load velocity (10 mm·min-1, 50 mm·min-1, 100 mm·min-1 and 300 mm·min-1) were investigated using the pullout method. This study aims to explore the mechanical properties of the soil-root interface in the real conditions using the pullout test method. The results showed two kinds of pullout test failure modes during the experimental process: breakage failure and pullout failure. The results showed that the roots were easier to be broken when the root diameter was smaller or the loading speed was larger. The relationship between the maximum anchorage force and root diameter was linear and the linearly dependent coefficient (R2) was larger than 0.85. The anchorage force increased with the root embedment length. An increase of 10%-15% for the maximum anchorage force was found when load speed increased from 10 to 300 mm.min-1. The mean peak slippage of the root was from 13.81 to 35.79 mm when the load velocity varied from 10 to 300 mm.min-1. The study will be helpful for the design of slopes reinforced by vegetation and in predicting risk of uprooting of trees, and will have practical benefits for understanding the mechanism of landslide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.