Abstract

Primitive binary cyclic codes of length n=2/sup m/ are considered. A BCH code with designed distance delta is denoted B(n, delta ). A BCH code is always a narrow-sense BCH code. A codeword is identified with its locator polynomial, whose coefficients are the symmetric functions of the locators. The definition of the code by its zeros-set involves some properties for the power sums of the locators. Moreover, the symmetric functions and the power sums of the locators are related to Newton's identities. An algebraic point of view is presented in order to prove or disprove the existence of words of a given weight in a code. The principal result is the true minimum distance of some BCH codes of length 255 and 511. which were not known. The minimum weight codewords of the codes B(n2/sup h/-1) are studied. It is proved that the set of the minimum weight codewords of the BCH code B(n,2/sup m-2/-1) equals the set of the minimum weight codewords of the punctured Reed-Muller code of length n and order 2, for any m.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.