Abstract
In this paper, we investigate the problem of optimal control of complex multistage chemical reactions, which is considered a nonlinear global constrained optimization problem. This class of problems is computationally expensive due to the inclusion of multiple parameters and requires parallel computing systems and algorithms to obtain a solution within a reasonable time. However, the efficiency of parallel algorithms can differ depending on the architecture of the computing system. One available approach to deal with this is the development of specialized optimization algorithms that consider not only problem-specific features but also peculiarities of a computing system in which the algorithms are launched. In this work, we developed a novel parallel population algorithm based on the mind evolutionary computation method. This algorithm is designed for desktop girds and works in synchronous and asynchronous modes. The algorithm and its software implementation were used to solve the problem of the catalytic reforming of gasoline and to study the parallelization efficiency. Results of the numerical experiments are presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.