Abstract

The influence of SDBS, SLS, SLES, and SS as drag reducing agents on flow of Iraqi crude oil in pipelines was investigated in the present work. The effect of additive type, additive concentration, pipe diameter, solution flow rate, and the presence of elbows on the percentage of drag reduction (%Dr) and the amount of flow increases (%FI) was addressed. The maximum drag reduction was 55% obtained at 250 ppm SDBS surfactant flowing in straight pipes of 0.0508 m I.D. The dimensional analysis was used for grouping the significant quantities into dimensionless groups to reduce the number of variables. The results showed good agreement between the observed drag reduction percent values and the predicted ones with high value of the correlation coefficient.

Highlights

  • Drag reduction is a phenomenon in which the friction of a liquid flowing in a pipe in turbulent flow is decreased by using a small amount of an additive

  • The important aspect of surfactant which impacts their performance is their ability to self-repair. This is the ability of a group of molecules to return to its original form after their structure has been altered as a result of high shear; this property recognizes the surfactant from polymers and aluminum disoaps, which degrade when subjected to high shear and generally cannot reform

  • The preparation of additive solution by mixing small amounts of surfactants with a sample of crude oil is the first step in the experimental procedure; the solution is added into the reservoir tank of crude oil to use in the recirculation closed system

Read more

Summary

Introduction

Drag reduction is a phenomenon in which the friction of a liquid flowing in a pipe in turbulent flow is decreased by using a small amount of an additive. The important aspect of surfactant which impacts their performance is their ability to self-repair This is the ability of a group of molecules to return to its original form after their structure has been altered as a result of high shear; this property recognizes the surfactant from polymers and aluminum disoaps, which degrade when subjected to high shear and generally cannot reform. They cannot be effective in recirculating the fluid, and these pumps apply high shear stress to fluid. To study the effect of additive type, additive concentration, pipe diameter, solution flow rate, and the presence of radius elbows on the percentage of drag reduction (%Dr) and the amount of flow increases (%FI), these parameters have the most significant effect on the flow of fluids

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.