Abstract

Any property of a material is a function of its microstructure and microstructure is a function of material composition. So, to maximize the desired properties of a material, one has to understand the evolution of microstructure which in turn is nothing but the reflection of the role of alloying elements. Research has not been done to understand the universal behavior of a certain base/alloying element. Let’s take the example of Cl- ion in HCl, we all know that in general, chloride ion can only be replaced by Fluoride or oxygen ion and that no other ion can replace it. But when you consider a metal like Ni, Co, Cr, Fe etc. there is no establishment that it behaves only in a certain way. Though I concord to the fact that discovery of universal behavior of Ni is lot complex than chloride ion, I think that future research should be focused in this direction also. Superalloys are the candidate materials required to improve thermal efficiency of a gas turbine by allowing higher turbine inlet gas temperatures. Gas turbines are the heart of local power systems, next generation jet engines and high performance space rockets. Recent research in superalloys showed that addition of some alloying elements in minor quantities can result in drastic change in properties. Such an alloying element is Ruthenium (Ru). Addition of Ruthenium to superalloys has shown improvement in mechanical properties by an order of magnitude. However reasons for such improvement are not known yet. Hence, there is a need to identify its role and discover the universal behavior of ruthenium to utilize it efficiently. In this proposal, we study materials with different compositions that are derived based on one ruthenium containing superalloy, and different thermomechanical history. Based on the evolution of microstructures and results of mechanical testing, we plan to determine the exact role of Ruthenium and prediction of its behavior with respect to other elements in the material such as Ni, Cr, Co, Mo, W etc. and stress and temperature. This helps us to determine the right quantity of ruthenium required for a given composition and operating conditions.

Highlights

  • We study materials with different compositions that are derived based on one ruthenium containing superalloy, and different thermomechanical history

  • Due to time constraint, all the features of microstructures but only certain important properties of the material, hardness and creep rupture life will be determined under this proposal

  • Hardness and creep rupture life of six samples from RHEA1 ingot. *RHEA10X – Sample from RHEA1 ingot with a thermomechanical history represented by X, **ST1 – Solution Treatment temperature for the specific alloy, ***A1, A2 – Aging treatments specific to that alloy

Read more

Summary

Introduction

We study materials with different compositions that are derived based on one ruthenium containing superalloy, and different thermomechanical history. Based on the evolution of microstructures and results of mechanical testing, we plan to determine the exact role of Ruthenium and prediction of its behavior with respect to other elements in the material such as Ni, Cr, Co, Mo, W etc. Superalloy, mechanical properties, thermomechanical processing, creep, proposal

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.