Abstract

Time dependences of the azimuthal component of the torque T φ(t) acting on magnetization are calculated to understand the nature of the delayed magnetization acceleration effect observed during the 90° pulsed magnetization of real ferrite–garnet films, in which biaxial anisotropy exists alongside with in-plane anisotropy. A calculation technique based on analyzing an operating point trajectory is used. Calculations show that if the effective anisotropy field H K2 is comparable to the magnetizing pulse amplitude H ma, abruptly ascending regions at characteristic times t* in curves T φ(t) arise, in the limit of which nonlinear magnetization oscillations formed. The shape of these regions depends weakly on the magnetizing pulse front duration τf. This explains the reason of the weak dependence of the nonlinear magnetization oscillations on duration of the magnetizing pulse front. Calculations also show that the main features of the delayed acceleration effect are less clear upon an increase of the pulse amplitude: the behavior of curves T φ(t) becomes smoother near times t*, and an increase in the pulse front duration is accompanied by a stronger drop in the intensity of magnetization oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.