Abstract

Single-molecule localisation microscopy (SMLM) allows the super-resolved imaging of proteins within mammalian nuclei at spatial resolutions comparable to that of a nucleosome itself (~20 nm). The technique is therefore well suited to the study of chromatin structure. Fixed-cell SMLM has already allowed temporal 'snapshots' of how proteins are arranged on chromatin within mammalian nuclei. In this chapter, we focus on how recent developments, for example in selective plane illumination and protein labelling, have led to a range of live-cell SMLM studies. We describe how to carry out single-particle tracking (SPT) of single proteins and, by analysing their diffusion parameters, how to determine whether proteins interact with chromatin, diffuse freely or do both. We can study the numbers of proteins that interact with chromatin and also determine their residence time on chromatin. We can determine whether these proteins form functional clusters within the nucleus as well as whether they form specific nuclear structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.