Abstract

Amphibians are thought to be highly susceptible to perturbed environments. However, recent studies show that many of them are successful inhabitants of disturbed, fragmented habitats. The source of this resilience is yet unclear, but it may be the byproduct of having a robust phenotype and/or the result of phenotypic plasticity. We then assessed the contribution of each by evaluating cytological features of two brain nuclei that modulate reproductive behavior and of the ovary, using female specimens of the frog Diaglena spatulata prospering in conserved and disturbed areas of a tropical dry forest. Our results in the brain show that the medial amygdala, but not the preoptic area, had a reduced size in frogs collected in disturbed forests compared to specimens collected in conserved forests. Both brain nuclei displayed, however, neurons with a reduced size in frogs captured in disturbed forest patches. In contrast, ovarian cytological features were similar between groups. Our preliminary results lead us to propose that Diaglena spatulata female specimens might combine robust ovary and plastic brain’s phenotypic traits to confront disturbed environments. This, however, is still a working hypothetical framework that needs to be experimentally confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.