Abstract

Studying the environments of 0.4 < z < 1.2 ultraviolet (UV)-selected galaxies, as examples of extreme star-forming galaxies (with star formation rates (SFRs) in the range of 3-30 M_☉ yr^(–1)), we explore the relationship between high rates of star formation, host halo mass, and pair fractions. We study the large- and small-scale environments of local ultraviolet luminous galaxies (UVLGs) by measuring angular correlation functions. We cross-correlate these systems with other galaxy samples: a volume-limited sample (ALL), a blue luminous galaxy sample, and a luminous red galaxy (LRG) sample. We determine the UVLG comoving correlation length to be r_0 = 4.8^(+11.6)_(–2.4) h^(–1) Mpc at z = 1.0, which is unable to constrain the halo mass for this sample. However, we find that UVLGs form close (separation <30 kpc) pairs with the ALL sample, but do not frequently form pairs with LRGs. A rare subset of UVLGs, those with the highest FUV surface brightnesses, are believed to be local analogs of high-redshift Lyman break galaxies (LBGs) and are called Lyman break analogs (LBAs). LBGs and LBAs share similar characteristics (i.e., color, size, surface brightness, specific SFRs, metallicities, and dust content). Recent Hubble Space Telescope images of z ~ 0.2 LBAs show disturbed morphologies, signs of mergers and interactions. UVLGs may be influenced by interactions with other galaxies and we discuss this result in terms of other high star-forming, merging systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call