Abstract
In this study, we report on the use of differential mobility spectrometry (DMS) as a tool for studying tautomeric species, allowing a more in-depth interrogation of these elusive isomers using ion/molecule reactions and tandem mass spectrometry. As an example, we revisit a case study in which gas-phase hydrogen-deuterium exchange (HDX)-a probe of ion structure in mass spectrometry-actually altered analyte ion structure by tautomerization. For the N- and O-protonated tautomers of 4-aminobenzoic acid, when separated using DMS and subjected to subsequent HDX with trace levels of D2O, the anticipated difference between the exchange rates of the two tautomers is observed. However, when using higher levels of D2O or a more basic reagent, equivalent and almost complete exchange of all labile protons is observed. This second observation is a result of the interconversion of the N-protonated tautomer to the O-protonated form during HDX. We can monitor this transformation experimentally, with support from detailed molecular dynamics and electronic structure calculations. In fact, calculations suggest the onset of bulk solution phase properties for 4-aminobenzoic acid upon solvation with eight CH3OH molecules. These findings also underscore the need for choosing HDX reagents and conditions judiciously when separating interconvertible isomers using DMS. Graphical Abstract ᅟ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.