Abstract

High-resolution carbon-13 nuclear magnetic resonance (NMR) spectra of enzyme-inhibitor and enzyme-substrate complexes provide detailed structural and stereochemical information on the mechanism of enzyme action. The proteases trypsin and papain are shown to form tetrahedrally coordinated complexes and acyl derivatives with a variety of compounds artificially enriched at the site or sites of interest. These results are compared with the structural information derived from x-ray diffraction. Detailed NMR studies have provided a clearer picture of the ionization state of the residues participating in enzyme-catalyzed processes than other more classical techniques. The dynamics of enzymic catalysis can be observed at sub-zero temperatures by a combination of cryoenzymology and carbon-13 NMR spectroscopy. With these powerful techniques, transient, covalently bound intermediates in enzyme-catalyzed reactions can be detected and their structures rigorously assigned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.