Abstract

Driver drowsiness is a significant concern and one of the leading causes of traffic accidents. Advances in cognitive neuroscience and computer science have enabled the detection of drivers’ drowsiness using Brain-Computer Interfaces (BCIs) and Machine Learning (ML). However, the literature lacks a comprehensive evaluation of drowsiness detection performance using a heterogeneous set of ML algorithms, being also necessary to study the performance of scalable ML models suitable for groups of subjects. To address these limitations, this work presents an intelligent framework employing BCIs and features based on electroencephalography for detecting drowsiness in driving scenarios. The SEED-VIG dataset is used to evaluate the best-performing models for individual subjects and groups. Results show that Random Forest (RF) outperformed other models used in the literature, such as Support Vector Machine (SVM), with a 78% f1-score for individual models. Regarding scalable models, RF reached a 79% f1-score, demonstrating the effectiveness of these approaches. This publication highlights the relevance of exploring a diverse set of ML algorithms and scalable approaches suitable for groups of subjects to improve drowsiness detection systems and ultimately reduce the number of accidents caused by driver fatigue. The lessons learned from this study show that not only SVM but also other models not sufficiently explored in the literature are relevant for drowsiness detection. Additionally, scalable approaches are effective in detecting drowsiness, even when new subjects are evaluated. Thus, the proposed framework presents a novel approach for detecting drowsiness in driving scenarios using BCIs and ML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.