Abstract

In many annular two-phase gas–liquid flows, large disturbance waves propagate liquid mass. These waves are important for modeling of gas-to-liquid momentum transfer and liquid film behavior. High-speed videos of vertical upflow have been analyzed to extract individual and average wave data. Two types of structures, coherent waves and piece waves, have been identified in these flows. Velocities, lengths, and temporal spacings of individual waves and average velocities, lengths, frequencies, and intermittencies have been studied as functions of both gas and liquid flow rates. Velocity and frequency increase with liquid and gas flow rates, length decreases with increasing gas flow and increases with increasing liquid flow, and intermittency is predominantly an increasing function of liquid flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.