Abstract
This is a survey article whose main goal is to explain how many components of the character variety of a closed surface are either deformation spaces of representations into the maximal compact subgroup or deformation spaces of certain Fuchsian representations. This latter family is of particular interest and is related to the field of higher Teichm\"uller theory. Our main tool is the theory of Higgs bundles. We try to develop the general theory of Higgs bundles for real groups and indicate where subtleties arise. However, the main emphasis is placed on concrete examples which are our motivating objects. In particular, we do not prove any of the foundational theorems, rather we state them and show how they can be used to prove interesting statements about components of the character variety. We have also not spent any time developing the tools (harmonic maps) which define the bridge between Higgs bundles and the character variety. For this side of the story we refer the reader to the survey article of Q. Li [arXiv:1809.05747].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.