Abstract

Unsolved questions in computational visual neuroscience research are whether and how neurons and their connecting cortical networks can adapt when normal vision is compromised by a neurodevelopmental disorder or damage to the visual system. This question on neuroplasticity is particularly relevant in the context of rehabilitation therapies that attempt to overcome limitations or damage, through either perceptual training or retinal and cortical implants. Studies on cortical neuroplasticity have generally made the assumption that neuronal population properties and the resulting visual field maps are stable in healthy observers. Consequently, differences in the estimates of these properties between patients and healthy observers have been taken as a straightforward indication for neuroplasticity. However, recent studies imply that the modeled neuronal properties and the cortical visual maps vary substantially within healthy participants, e.g., in response to specific stimuli or under the influence of cognitive factors such as attention. Although notable advances have been made to improve the reliability of stimulus-driven approaches, the reliance on the visual input remains a challenge for the interpretability of the obtained results. Therefore, we argue that there is an important role in the study of cortical neuroplasticity for approaches that assess intracortical signal processing and circuitry models that can link visual cortex anatomy, function, and dynamics.

Highlights

  • Unravelling the organization of the visual cortex is fundamental for understanding the foundations of vision in health and disease

  • Some of the hypotheses that can be tested with population receptive field (pRF) mapping are as follows: are the neurons within the lesion projection zone active? Is there a displacement in position or enlargement of the pRF size during development, following a retinal or cortical lesion? Do the pRF properties change in response to monocular treatments that promote the use of the amblyopic eye, e.g., patching or blurring therapy?

  • The methodological advances serve three different goals, which may be useful in studying neuroplasticity: (1) improve the reliability of the estimates using more informative pRF shapes and more complex computational models, (2) measure stimulus-selective maps, which allow to capture the reorganization of specific neuronal populations, and (3) measure spatial modulation and dynamics of neuronal populations, potentially reflecting short-term neuroplastic changes

Read more

Summary

Introduction

Unravelling the organization of the visual cortex is fundamental for understanding the foundations of vision in health and disease. PRF mapping is most accurate at an advanced stage of ophthalmologic disease where the visual field defects are relatively large and the scotomatic edge (i.e., the transition between healthy visual cortex and damaged visual cortex) is sharp [34, 35] Overall, this inability to accurately detect small visual field defects implies that the sensitivity of the pRF approach is too limited to monitor the effects of slow retinal degeneration or slow cortical changes that would presumably be associated with rehabilitation therapies or other procedures to restore visual functioning. Stimulating these neuronal populations, a number of recent studies have shown that compared to the standard stimulus (flickering luminance contrast checkerboard bar), pRF estimates shift in position and change their size [36,37,38,39] These studies indicate that the recruitment of neural resources depends on the task and that there is a dependency of the retinotopic maps on the task or stimulus. Either of these explanations limits the ability of the pRF approach to provide a straightforward assessment of neuroplasticity

Improving Stimulus-Driven Approaches
Models of Perception
Cortical Circuitry Models Look beyond the Stimulus
Mesoscale Plasticity
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.