Abstract

Abstract. The combination of two well-established methods, of quadrocopter-borne air sampling and methane isotopic analyses, is applied to determine the source process of methane at different altitudes and to study mixing processes. A proof-of-concept study was performed to demonstrate the capabilities of quadrocopter air sampling for subsequently analysing the methane isotopic composition δ13C in the laboratory. The advantage of the system compared to classical sampling on the ground and at tall towers is the flexibility concerning sampling location, and in particular the flexible choice of sampling altitude, allowing the study of the layering and mixing of air masses with potentially different spatial origin of air masses and methane. Boundary layer mixing processes and the methane isotopic composition were studied at Polder Zarnekow in Mecklenburg–West Pomerania in the north-east of Germany, which has become a strong source of biogenically produced methane after rewetting the drained and degraded peatland. Methane fluxes are measured continuously at the site. They show high emissions from May to September, and a strong diurnal variability. For two case studies on 23 May and 5 September 2018, vertical profiles of temperature and humidity were recorded up to an altitude of 650 and 1000 m, respectively, during the morning transition. Air samples were taken at different altitudes and analysed in the laboratory for methane isotopic composition. The values showed a different isotopic composition in the vertical distribution during stable conditions in the morning (delta values of −51.5 ‰ below the temperature inversion at an altitude of 150 m on 23 May 2018 and at an altitude of 50 m on 5 September 2018, delta values of −50.1 ‰ above). After the onset of turbulent mixing, the isotopic composition was the same throughout the vertical column with a mean delta value of −49.9 ± 0.45 ‰. The systematically more negative delta values occurred only as long as the nocturnal temperature inversion was present. During the September study, water samples were analysed as well for methane concentration and isotopic composition in order to provide a link between surface and atmosphere. The water samples reveal high variability on horizontal scales of a few tens of metres for this particular case. The airborne sampling system and consecutive analysis chain were shown to provide reliable and reproducible results for two samples obtained simultaneously. The method presents a powerful tool for distinguishing the source process of methane at different altitudes. The isotopic composition showed clearly depleted delta values directly above a biological methane source when vertical mixing was hampered by a temperature inversion, and different delta values above, where the air masses originate from a different footprint area. The vertical distribution of methane isotopic composition can serve as tracer for mixing processes of methane within the atmospheric boundary layer.

Highlights

  • Methane’s (CH4) global warming potential is 32 times that of carbon dioxide (CO2) on a century timescale (Etminan et al, 2016), and 72 times higher on a decadal timescale, producing a near-future, greater overall impact on the atmospheric radiative balance (Solomon et al, 2007)

  • Boundary layer mixing processes and the methane isotopic composition were studied at Polder Zarnekow in Mecklenburg–West Pomerania in the north-east of Germany, which has become a strong source of biogenically produced methane after rewetting the drained and degraded peatland

  • The isotopic composition showed clearly depleted delta values directly above a biological methane source when vertical mixing was hampered by a temperature inversion, and different delta values above, where the air masses originate from a different footprint area

Read more

Summary

Introduction

Methane’s (CH4) global warming potential is 32 times that of carbon dioxide (CO2) on a century timescale (Etminan et al, 2016), and 72 times higher on a decadal timescale, producing a near-future, greater overall impact on the atmospheric radiative balance (Solomon et al, 2007). Global warming feedbacks and rising anthropogenic emissions will likely increase CH4 emissions (Wunch et al, 2009). Current knowledge of CH4 biogeochemical processes, transport and small-scale distribution remains inadequate. This is in part caused by the complex processes of production, transformation and transport and in part caused by the lack of sufficiently accurate assessments of the vertical distribution of methane and the temporal and spatial behaviour of highly variable anthropogenic and natural CH4 surface fluxes (Solomon et al, 2007). Global mean CH4 concentration increased until the early 1990s and mostly stabilized for about a decade (Dlugokencky et al, 2003). The recent increase has been proposed to be related to enhanced emissions from tropical wetlands associated with the extremely wet season in 2009 in the Amazon region (Dlugokencky et al, 2009; Chen et al, 2010)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call