Abstract
Studies of axonal outgrowth and regeneration after spinal cord injury are hampered by the complexity of the events involved. Here, we present a simple and improved in vitro approach to investigate outgrowth, regeneration of the corticospinal tract, and intrinsic parenchymal responses. We prepared organotypic co-cultures using explants from the motor cortex of postnatal donor mice ubiquitously expressing green fluorescent protein and cervical spinal cord from wild type pups of the same age. Our data show that: a) motor-cortical outgrowth is already detectable after 1 d in culture and is source specific; b) treatment with neurotrophin-3 and C3 transferase from Clostridium botulinum significantly enhances axonal outgrowth during the course of cultivation; c) outgrowing axons form synaptic connections, as demonstrated by immunohistochemistry and calcium imaging; and d) migrating cells of motor-cortical origin can be reliably identified without previous tracing and are mostly neural precursors that survive and mature in the spinal cord parenchyma. Thus, our model is suitable for screening for candidate substances that enhance outgrowth and regeneration of the corticospinal tract and for studying the role of endogenous neural precursors after lesion induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Neurotrauma
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.