Abstract

Coherent sets in dynamical systems are regions in phase space that optimally "carry mass" with them under the system's evolution, so that these regions experience minimal leakage. The dominant tool for determining coherent sets is the transfer operator, which provides a complete description of Lagrangian mass transport. In this work, we combine existing transfer operator methods with a windowing scheme to study the spatial and temporal evolution of a so-called Agulhas ring: a large anticyclonic mesoscale eddy playing a key role in inter-ocean exchange of climate-relevant properties. Our focus is on ring decay over time and the windowing scheme enables us to study how the most coherent region (our estimate of the ring) varies in position and size over a period of more than two years. We compare the eddy-like structure and its spatio-temporal changes as revealed by our method and by a classical Eulerian approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.