Abstract

Background: Alzheimer’s disease (AD) is an increasingly prevalent neurodegenerative disease characterized by protein aggregation in the form of amyloid plaques containing beta-amyloid peptides and neurofibrillary tangles containing hyperphosphorylated tau protein. The central molecular events underlying AD pathogenesis remain controversial and poorly defined. Drosophila melanogaster has emerged as an important genetic resource for studying the pathology of AD. Many AD models have been created using Drosophila, taking advantage of its short generation times, sophisticated genetic tools, and abundance of homologs to human genes. Purpose: This review summarizes different models for studying AD in Drosophila melanogaster, including the full-length APP, C99, Aβ42 and Tau models, explaining how the models were built and what we have learned from them. Conclusion: Four main AD Drosophila models are introduced in this review, which can serve as a future method to investigate genes and drugs that can modify symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call