Abstract

The production of electric vehicles and their accessories is grooming day by day in the automotive industry. The heart of these electric vehicles is the power source, which is known as batteries. The capacity and performance of such batteries demand a high rating, due to the customer's need and improved vehicle features. Unfortunately, the batteries are facing thermal failures caused by the poor thermal management approach. Li-ion batteries are the most familiar ones which have a very high energy density compared to others. But, these batteries lead to the breakdown of ions and lithium plating because of the fluctuation in temperature distribution and fast charging characteristics. The temperature distribution varies with respect to loading and application. However, this process is accompanied by thermal runaway, which may result in the fatal destruction of batteries. To overcome such issues, the present work selected looped heat pipes (LHP) as a device to transfer the excessive temperature on batteries using nanofluids. Water, Ethylene glycol and acetone were selected as working fluids along with graphene oxide (GO) Nanoparticles. The experiment is conducted for a constant heat input of 30W and various filling ratios (20%, 35%, 50%, 65%). Stability, thermal conductivity, thermal resistance and temperature distributions are discussed. The experiment results are validated with Computational fluid dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.