Abstract

Juglone (Jug) is one of the main active substances of Cortex Juglandis Mandshuricae in a folk anti-cancer prescription. Previously, there were few studies on its interaction with DNA and mechanism of action. The present paper studied, the mechanism of action between Jug and calf thymus DNA (ctDNA) by fluorescence spectroscopy, together with ethidium bromide (EB) fluorescence probe, UV–vis absorption spectroscopy, salt effect and ctDNA melting point (Tm) experiment, resonance scattering spectroscopy and molecular docking under the simulated human physiological conditions. The experimental findings indicated that Jug quiescently quenched the fluorescence of EB-ctDNA system, characteristic absorption peak intensity of ctDNA presented a decolorization effect after the interaction of ctDNA and Jug, the interaction with ctDNA enhanced of Jug resonance scattering peak and generated new resonance scattering peak, the salt exerted less effect on the interaction between Jug and ctDNA molecules, and the interaction with Jug increased the Tm value of ctDNA by 5.0 °C The binding constant (KA) between Jug and ctDNA was 2.12 × 105 L/mol (310 K) and the number of binding sites (n) was about 1. The interaction between Jug and ctDNA was an entropically driven spontaneous and endothermic process. The results of molecular docking further showed that the naphthoquinone plane was embedded in the region between the two TA bases in the ctDNA groove, and the 5′-hydroxyl and 4-naphthoquinone groups extended to the outside of the ctDNA double helix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call