Abstract

Bioglass offers a variety of uses for tissue engineering due to its good biocompatibility and chemical composition, similar to a mineral portion of the body. The synthesis of bioglass 13-93 scaffold was achieved by salt leaching technique, and potassium chloride (KCl) was used as porogen with particle sizes of (200-250) μm. Then, sintering to 750 ◦C for around 1 hour was performed. The resultant materials were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). They were immersed in a solution of simulated body fluids (SBF) for 7 and 14 days, respectively. Initially, calcium phosphate was created. After 7 and 14 days, the surface comprised of developed crystalline apatite. The bioactivity of scaffolds that were created and examined. The FTIR, SEM, and XRD experiments were done before and after immersion of the sample in SBF. The results showed that the scaffolds contained open and interconnected pores with porosities ranging between (75-78%). The maximum value of compressive strength of the prepared scaffold was about 5.6MPa. Based on the obtained results, the glass scaffolds can be considered promising for bone defects and replacement applications

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.