Abstract

BackgroundThe Public Population Project in Genomics (P3G) is an organisation that aims to promote collaboration between researchers in the field of population-based genomics. The main objectives of P3G are to encourage collaboration between researchers and biobankers, optimize study design, promote the harmonization of information use in biobanks, and facilitate transfer of knowledge between interested parties. The importance of calibration and harmonisation of methods for environmental exposure assessment to allow pooling of data across studies in the evaluation of gene-environment interactions has been recognised by P3G, which has set up a methodological group on calibration with the aim of; 1) reviewing the published methodological literature on measurement error correction methods with assumptions and methods of implementation; 2) reviewing the evidence available from published nutritional epidemiological studies that have used a calibration approach; 3) disseminating information in the form of a comparison chart on approaches to perform calibration studies and how to obtain correction factors in order to support research groups collaborating within the P3G network that are unfamiliar with the methods employed; 4) with application to the field of nutritional epidemiology, including gene-diet interactions, ultimately developing a inventory of the typical correction factors for various nutrients.Methods/DesignSystematic review of (a) the methodological literature on methods to correct for measurement error in epidemiological studies; and (b) studies that have been designed primarily to investigate the association between diet and disease and have also corrected for measurement error in dietary intake.DiscussionThe conduct of a systematic review of the methodological literature on calibration will facilitate the evaluation of methods to correct for measurement error and the design of calibration studies for the prospective pooling of biobanks. This could increase the efficiency of the design of such studies, improve statistical power, reduce bias, and aid in the assessment of gene-environment interaction effects in complex diseases. The systematic review of calibration of dietary intake information could inform gene-diet interaction investigations involving the pooling of results from studies with nutritional data collected in different ways.

Highlights

  • The Public Population Project in Genomics (P3G) is an organisation that aims to promote collaboration between researchers in the field of population-based genomics

  • The conduct of a systematic review of the methodological literature on calibration will facilitate the evaluation of methods to correct for measurement error and the design of calibration studies for the prospective pooling of biobanks

  • The systematic review of calibration of dietary intake information could inform gene-diet interaction investigations involving the pooling of results from studies with nutritional data collected in different ways

Read more

Summary

Introduction

The Public Population Project in Genomics (P3G) is an organisation that aims to promote collaboration between researchers in the field of population-based genomics. The importance of calibration and harmonisation of methods for environmental exposure assessment to allow pooling of data across studies in the evaluation of gene-environment interactions has been recognised by P3G, which has set up a methodological group on calibration with the aim of; 1) reviewing the published methodological literature on measurement error correction methods with assumptions and methods of implementation; 2) reviewing the evidence available from published nutritional epidemiological studies that have used a calibration approach; 3) disseminating information in the form of a comparison chart on approaches to perform calibration studies and how to obtain correction factors in order to support research groups collaborating within the P3G network that are unfamiliar with the methods employed; 4) with application to the field of nutritional epidemiology, including genediet interactions, developing a inventory of the typical correction factors for various nutrients. The impact of misclassification on departures from additive effects is difficult to predict [9,10]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call