Abstract

The working condition diagnosis of pumping wells is an important basis for judging it's running condition. For a long time, indicator diagram is used to solve the wave equation by mathematical method to get the downhole pump indicator diagram which is obtained to judge and analyze the working condition of oil pumping equipment. In recent years, with the development of AI (artificial intelligence) technology, how to combine artificial intelligence technology with rod pumping wells lifting technology to provide a new way of thinking for pumping wells lifting and improve the intelligence level to achieve real-time control of the well has become a difficult problem in front of technicians. After several years of research, technicians in huabei oilfield innovatively proposed to establish working diagnosis model of pumping wells through machine learning neural network algorithm. The model can realize working diagnosis of oil well by using a large number of labeled indicator diagram and working diagnostic data as training samples. As long as the labeled data provided is of high accuracy and large amount, the accuracy of the model can reach more than 90%. The model is simple in structure, fast in operation speed, and has high application value in the field. Several rod pumping wells were randomly selected from a working area of huabei oilfield, and the above model was used to diagnose the working conditions. The results showed that the average error between the diagnosis results and the real ones was only 7%, less than 10% of the common requirements, which met the needs of engineering application.

Highlights

  • 抽油机井功图工况诊断技术自上世纪80年代以来,经 过技术人员几十年的努力已经较为成熟,平均诊断误差在 10%以内,并已在全国各大油田推广应用[1,2,3]。但是,目 前利用数学方法求解波动方程得出井下泵功图进行工况 诊断的方法存在以下两个问题:一是计算方法涉及到的参 数较多,对参数的准确性要求较高,如阻尼系数、液体粘 度、抽油杆直径、应力波传播速度、曲柄旋转角速度、傅 里叶系数及展开级数项等,为了便于计算,每个参数都选 取的是定值(实际中有的参数随井深发生变化,如抽油杆 直径,有的参数在单冲次内发生变化,如抽油机电机变速 运行时每个时刻的曲柄旋转角速度都在发生变化),而每 个参数设置是否合理对诊断结果具有较大的影响,这就要 求对每口井设置合理的计算参数;二是计算过程迭代次数 多,计算时间长;求解波动方程要求从井口往下逐段进行 受力计算,而每段计算时的傅里叶系数都要循环至展开级 数项的次数,该次数选择过少导致计算精度变差,选择过 多导致计算时间变长,单井单功图计算时长约5-10秒,尤 其是针对大量油井数据同时计算时运算更慢,无法实现油 井实时优化控制的需要。

  • As long as the labeled data provided is of high accuracy and large amount, the accuracy of the model can reach more than 90%

  • The results showed that the average error between the diagnosis results and the real ones was only 7%, less than 10% of the common requirements, which met the needs of engineering application

Read more

Summary

Introduction

抽油机井功图工况诊断技术自上世纪80年代以来,经 过技术人员几十年的努力已经较为成熟,平均诊断误差在 10%以内,并已在全国各大油田推广应用[1,2,3]。但是,目 前利用数学方法求解波动方程得出井下泵功图进行工况 诊断的方法存在以下两个问题:一是计算方法涉及到的参 数较多,对参数的准确性要求较高,如阻尼系数、液体粘 度、抽油杆直径、应力波传播速度、曲柄旋转角速度、傅 里叶系数及展开级数项等,为了便于计算,每个参数都选 取的是定值(实际中有的参数随井深发生变化,如抽油杆 直径,有的参数在单冲次内发生变化,如抽油机电机变速 运行时每个时刻的曲柄旋转角速度都在发生变化),而每 个参数设置是否合理对诊断结果具有较大的影响,这就要 求对每口井设置合理的计算参数;二是计算过程迭代次数 多,计算时间长;求解波动方程要求从井口往下逐段进行 受力计算,而每段计算时的傅里叶系数都要循环至展开级 数项的次数,该次数选择过少导致计算精度变差,选择过 多导致计算时间变长,单井单功图计算时长约5-10秒,尤 其是针对大量油井数据同时计算时运算更慢,无法实现油 井实时优化控制的需要。. 一个冲程计算一次”的实时匹配油井生产状态的人工智能 采油精细控制模式,大大提高油井的智能化水平;该技术 核心主要为机器学习、语言处理、传感器采集等方面,通 过神经网络算法搭建油井工况诊断模型,并收集前期油井 运行的功图数据和已知的诊断结果数据作为训练样本,对 建立的模型进行训练,得到具有对新数据进行预测功能的 工况诊断模型,实现对油井的智能诊断。 机处理得到井下泵功图,再依据其变化曲率得出凡尔开闭 点以及功图特征对油井进行诊断。该方法将理论研究与实 际情况相结合,建立定向井的振动力学模型,对泵功图进 行模式识别,实现有杆抽油系统的故障诊断[2],见图2。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call