Abstract
An acoustic wave is a vibration in an elastic medium that propagates in space and time, thus transferring the energy supplied by an excitation source along the medium in the form of oscillation or vibration. Acoustic wave propagation entails elastic deformation of the medium along the propagation axis or in other axes as well. In contrast to electromagnetic waves, acoustic waves do require a medium to propagate, and their propagation speeds depend on the mechanical properties of the wave-supporting material. Virtually any material is capable of supporting acoustic wave propagation, including silicon. Nevertheless, the piezoelectric properties of certain materials facilitate the wave propagation. Thus, for improving the electromechanical energy conversion, piezoelectric materials are usually chosen as the acoustic layer of many acoustic-wave resonators. Also known as sound speed, the acoustic-wave phase velocities are several times slower than those of the electromagnetic wave traveling in the same medium(Auld,B. A.,1990). There exist two types of acoustic waves, surface acoustic waves (SAW) and bulk acoustic waves (BAW). A surface acoustic wave is a type of mechanical wave motion which travels along the surface of a solid material. As shown in Fig. 1, the surface particles of an isotropic solid move in ellipses in planes normal to the surface and parallel to the direction of the wave propagation. The particle displacement is significant at a depth of about one wavelength. This motion decreases at the surface at thinner depths and increases at greater depths. As the size of the ellipses is smaller, its eccentricity changes for particles in the deeper material. Surface acoustic waves were discovered in 1885 by Lord Rayleigh (Rayleigh,1885); therefore, they are often named after him: Rayleigh waves. Rayleigh showed that SAWs could explain one component of the seismic signal due to an earthquake, a phenomenon not previously understood. The velocity of acoustic waves is typically 3000 m/s, which is much lower than the velocity of the electromagnetic waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.