Abstract

Based on the fact that damping alloys can convert mechanical energy into heat energy and dissipate it in materials and the environment, high-strength Fe-Mn damping alloys were used to replace common gear materials to absorb vibration-generated energy from the vibration source. A high-strength Fe-Mn damping alloy was developed. Taking two kinds of new damping alloy materials and common materials as the research object, a constitutive model of the Fe-Mn damping alloy material was established, the temporal increment step form of the three-dimensional constitutive model was deduced, and a user-defined material (UMAT) subprogram of the damping constitutive alloy model was developed by FORTRAN language. Based on the three-dimensional contact non-linear finite element model of the gear shaft-bearing box, a transient dynamic analysis was conducted using a non-explicit algorithm to obtain the responses of vibration acceleration on the gear reducer box, which can verify the correctness of the proposed constitutive model. The vibration experiments of the gear reducer made of the above-mentioned materials were carried out under different working conditions. The vibration reduction of the developed high-strength Fe-Mn damping alloy can be certificated by comparing the vibration acceleration response and the measuring point temperature of the gear reducer house prepared by different alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call