Abstract

ABSTRACT This study is centered on the separation of the fluorene-dibenzofuran system through binary phase equilibrium experiments and azeotropic distillation simulations. An enhanced Othmer equilibrium still was employed to conduct phase equilibrium experiments, and the obtained data were correlated to determine the missing binary interaction parameters. The resulting experimental data demonstrated thermodynamic consistency and reliability. Subsequent correlation using the NRTL, UNIQUAC, and Wilson models highlighted the UNIQUAC model’s exceptional agreement with experimental values. This underscores the model’s capability to precisely characterize the fluorene-dibenzofuran system’s phase behavior. The phase equilibrium study provided pivotal parameters and predictions, forming the groundwork for subsequent separation process simulations and equipment development. Azeotropic simulations, employing ethylene glycol as a co-boiling solvent and simulated via Aspen software, yielded high-purity fluorene products with a minimum purity of ≥ 98%. These findings emphasize the potency of azeotropic distillation in achieving high-purity separation within the fluorene-dibenzofuran system, with promising implications for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call