Abstract
AIDS presents serious harms to public health worldwide. In this paper, we used five single models: ARIMA, SARIMA, Prophet, BP neural network, and LSTM method to model and predict the number of monthly AIDS incidence cases and mortality cases in China. We have also proposed the LSTM-SARIMA combination model to enhance the accuracy of the prediction. This study provides strong data support for the prevention and treatment of AIDS. We collected data on monthly AIDS incidence cases and mortality cases in China from January 2010 to February 2024. Among them, for modeling, we used data from January 2010 to February 2021 and the rest for validation. Treatments were applied to the dataset based on its characteristics during modeling. All models in our study were performed using Python 3.11.6. Meanwhile, we used the constructed model to predict monthly incidence and mortality cases from March 2024 to July 2024. We then evaluated our prediction results using RMSE, MAE, MAPE, and SMAPE. The deep learning methods of LSTM and BPNN outperform ARIMA, SARIMA, and Prophet in predicting the number of mortality cases. When predicting the number of AIDS incidence cases, there is little difference between the two types of methods, and the LSTM method performs slightly better than the rest of the methods. Meanwhile, the average error in predicting AIDS mortality cases is significantly lower than in predicting AIDS incidence cases. The LSTM-SARIMA method outperforms other methods in predicting AIDS incidence and mortality. Due to the different characteristics of the AIDS incidence and mortality cases series, the performance of distinct methods is slightly different. The AIDS mortality series is smoother than the incidence series. The combined LSTM-SARIMA model outperforms the traditional method in prediction and the LSTM method alone, which is of practical significance for optimizing the prediction results of AIDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.