Abstract

In this work, to improve the fuel economy of long-haul commercial vehicles, the effects of turbocompound system matching on engine performance were numerically and experimentally studied. Firstly, a 1D GT-POWER simulation model of an 11 L heavy-duty diesel engine was established and verified by the experimental data. Secondly, the performances of the turbocompound engine matching with different sizes of fixed geometry turbine (FGT) and power turbines were analyzed. It was found that the exhaust energy distribution between the turbocharger turbine and power turbine had a significant impact on engine performance, and the size of the turbocharger turbine had a more noticeable impact than the power turbine. Based on the FGT turbocompound system simulation result, an appropriate variable geometry turbocharger (VGT) and three wastegate turbochargers (WGT) were selected for further simulation and experimental research. In addition, the impacts of the transmission ratio between the power turbine shaft and the engine crankshaft, and the fuel injection timing on the engine performance were experimentally studied. The engine test result showed that the fuel economy was improved by 1.6% under European Steady State (ESC) cycle while keeping the weighted NOx emission the same as the original engine. Finally, the turbocompound engine with WGT was installed on a heavy-duty long-haul commercial vehicle for road tests. The fuel economy of the vehicle was improved by 2.54% under the 80 km/h constant speed road test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.