Abstract

For the first time, Si3N4 HTCC has been prepared using W as the metal phase by high-temperature co-firing (1830 °C/600 KPa/2 h) as a potential substrate candidate in electronic applications. It was discovered that the addition of Si3N4 to the W paste has a significant impact on thermal expansion coefficient matching and dissolution wetting. As the Si3N4 content increased from 0 to 27.23 vol%, the adhesion strength of W increased continuously from 2.83 kgf/mm2 to 7.04 kgf/mm2. The interfacial bonding of the Si3N4 ceramic and the conduction layer was discussed. SEM analysis confirmed that the interface between Si3N4 and W exhibited an interlocking structure. TEM, HRTEM and XRD indicated the formation of W2C and W5Si3 due to the interface reactions of W with residual carbon and Si3N4, respectively, which contributed to the reactive wetting and good adhesion strength between the interface. Suitable amounts of Si3N4 powder and great interfacial bonding were the main reasons for the tough interfacial matching between the Si3N4 ceramic and the conduction layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.