Abstract

Antimony nanoparticles, whose surfaces were modified by alkyl phenol polyoxyethylene ether (OP-10), were used as one of the types of lubricating additives in liquid paraffin (LP). The tribological properties of antimony nanoparticles as lubricating additives were evaluated and compared with those of pure LP on a four-ball test machine. The morphology and chemical composition of the worn surface were investigated and analyzed by using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the additives can obviously improve the anti-wear and friction reducing properties of LP, which are better under high friction load. The double-layer crystal structure of antimony can be separated and glided along the cleavage plane by a friction-shear force and a normal load, respectively. The separating and gliding of antimony can form a physical adsorption film, which can separate the friction surface to avoid direct contact of the friction surface and play an important role in improving the anti-wear and friction reducing properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call