Abstract

This paper presents the results of the treatment of ciprofloxacin in water with Co, N-doped TiO2 photocatalysts on a vermiculite background. Vermiculite (Ver) material after activation with HNO3 at three concentrations of 10%, 30%, and 40% exhibits a rougher surface. The 40% HNO3 activated material has the higest porosity and has a surface area greater than 79.4 times the total surface area of ​​the raw material. Co- and N-doped TiO2 photocatalysts on vermiculite were prepared by sol-gel method, using a mixture of tetraisopropylorthotitanate Ti(OC3H7)4 (TTIP), ethanol (EtOH), diethanolamine C4H11NO2 (DEA), and Co(NO3)2.6H2O. The influence of doped cobalt on the structure, surface morphology, and photocatalytic properties of N,Cox-TiO2/Ver (x=0.04;0.06;0.08 mol) was studied through scanning electron microscopy (SEM) and UV-Vis absorption spectroscopy. The SEM image shows that anatase-TiO2 crystals are evenly coated on the surface of Ver and the spherical particles are evenly dispersed on the surface of the material. The absorption spectrum shows that the band gap of the sample N,Cox-TiO2/Ver (x=0.04, 0.06, 0.08 mol) decreases from 3.32 eV to 2.64 eV. We implemented the preliminary experiments to test the efficiency of our synthesized material to treat the antibiotic ciprofloxacin in hospital wastewater. N,Co0,08-TiO2/Ver materials showed over 80% efficiency of removing the ciprofloxacin in these hospital wastewater samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call