Abstract

In the present work, the thixotropic property of a semisolid aluminium alloy (A356) under deformation is investigated numerically where the Couette flow between two parallel plates is considered. The flow field is represented by momentum conservation equations where the non-Newtonian behavior of the semisolid material is represented by the Herschel-Bulkley model. The agglomeration and the de-agglomeration phenomena of the suspended particles under shear are represented using a time dependent structural parameter influenced by the rate of strain and shear stress. The simulation predicts the flow field, rate of strain and apparent viscosity of the semisolid materials under transient and steady state conditions. It is found that the apparent viscosity shows a transient nature during sudden change in the shear rate, and its value decreases with increasing shear rate and vice-versa. It is also found that the present prediction shows a good agreement with prior work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call