Abstract

The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon predicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call