Abstract

To investigate the startup characteristics of the supercritical pressure water-cooled reactor (SCWR) system, a complete startup system model of the SCWR was established with the analysis code SCTRAN, based on the high-performance light water reactor (HPLWR) steam cycle and SCWR circulation startup loop. The correctness of the model was verified in comparison with the steady-state parameters of the steam cycle of the HPLWR. A sliding pressure startup procedure with a circulation loop that employs a control system was analyzed, and the transient performances of the core, steam drum, turbine, reheaters, steam extraction and heaters at each stage were obtained. The calculation results showed that the startup sequence and startup thermal parameters could fully meet the expectations: the system starts up stably and the core remains in the single phase; the inlet steam of the turbine stays superheated; the core inlet temperature can reach 280 °C after the adoption of the high-pressure and low-pressure heaters; and the inlet pressure of the high-pressure turbine can be kept constant. During the startup process, the maximum cladding surface temperature (MCST) remains below the limit of 650 °C, suggesting that the entire startup procedure is safe and reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.