Abstract

The terpolymerization of carbon dioxide (CO2), propylene oxide (PO), and cyclohexene oxide (CHO) were performed by both random polymerization and block polymerization to synthesize the random poly (propylene cyclohexene carbonate) (PPCHC), di-block polymers of poly (propylene carbonate–cyclohexyl carbonate) (PPC-PCHC), and tri-block polymers of poly (cyclohexyl carbonate–propylene carbonate–cyclohexyl carbonate) (PCHC-PPC-PCHC). The kinetics of the thermal degradation of the terpolymers was investigated by the multiple heating rate method (Kissinger-Akahira-Sunose (KAS) method), the single heating rate method (Coats-Redfern method), and the Isoconversional kinetic analysis method proposed by Vyazovkin with the data from thermogravimetric analysis under dynamic conditions. The values of ln k vs. T−1 for the thermal decomposition of four polymers demonstrate the thermal stability of PPC and PPC-PCHC are poorer than PPCHC and PCHC-PPC-PCHC. In addition, for PPCHC and PCHC-PPC-PCHC, there is an intersection between the two rate constant lines, which means that, for thermal stability of PPCHC, it is more stable than PCHC-PPC-PCHC at the temperature less than 309 °C and less stable when the decomposed temperature is more than 309 °C. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analysis/infrared spectrometry (TG/FTIR) techniques were applied to investigate the thermal degradation behavior of the polymers. The results showed that unzipping was the main degradation mechanism of all polymers so the final pyrolysates were cyclic propylene carbonate and cyclic cyclohexene carbonate. For the block copolymers, the main chain scission reaction first occurs at PC-PC linkages initiating an unzipping reaction of PPC chain and then, at CHC–CHC linkages, initiating an unzipping reaction of the PCHC chain. That is why the T−5% of di-block and tri-block polymers were not much higher than that of PPC while two maximum decomposition temperatures were observed for both the block copolymer and the second one were much higher than that of PPC. For PPCHC, the random arranged bulky cyclohexane groups in the polymer chain can effectively suppress the backbiting process and retard the unzipping reaction. Thus, it exhibited much higher T−5% than that of PPC and block copolymers.

Highlights

  • Carbon dioxide (CO2) is a nontoxic, nonflammable material that exists naturally in abundance

  • From the FTIR spectra of pyrolysates at different temperatures shown in Figure 5, it can be seen that the peak stands for carbon dioxide is observed at 230 ◦C while the peaks stand for cyclic carbonates are observed at 250 ◦C for PPC, PPC-PCHC, and PCHC-PPC-PCHC and higher than 270 ◦C for PPCHC, which indicates the main chain scission reaction and the unzipping reaction during the decomposition process first occuring in PC-PC segments

  • Thermal decomposition behaviors and degradation kinetic parameters of terpolymers with different sequence structures derived from CO2, propylene oxide (PO), and cyclohexene oxide (CHO) were studied by the combination of Py-GC/MS and TG/IR techniques

Read more

Summary

Introduction

Carbon dioxide (CO2) is a nontoxic, nonflammable material that exists naturally in abundance. TG analysis is an effective method for studying thermal decomposition kinetics and provides information on a frequency factor, activation energy, and overall reaction order. The thermal degradation kinetic parameters are obtained by using the multiple heating rate method (Kissinger-Akahira-Sunose (KAS) [26,27,28]), the single heating rate method (Coats-Redfern method) [29,30], and the Isoconversional kinetic analysis method proposed by Vyazovkin [31,32,33] This used the data from thermogravimetric analysis under dynamic conditions such as activation energy E, the pre-exponential factor A, and the rate constant k. They will provide theoretical basis of thermal stability for further application

Thermal Decomposition Behavior
Determination of the Composition and the Molecular Weight of Polymers
Thermal Decomposition Kinetics
E RT is calculated
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call