Abstract

The large-span ice shell is a novel building style with the aid of inflatable formwork and water-spraying method. Ice material has strong temperature sensitivity, and the ice shell experiences complicated environmental conditions during the operation stage. A thermal-mechanical coupling analysis framework is presented to explore the thermal effect of the ice shell. The transient simulation method for the non-uniform temperature field is established. A thermoelastic damage model for fibre-reinforced ice is derived and the thermal damage analysis method is conducted. Subsequently, the non-uniform temperature field is mapped into the mechanical field of the ice shell structure to carry out the temperature effect and further evaluate the thermal damage. A large-span ice shell built in Harbin Ice and Snow World expounds the applicability of the proposed method in practice. The distribution of non-uniform temperature field on the ice shell is investigated and thermal damage is further studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call