Abstract

The present study simulates gas-liquid flows in different scale pipes. Based on the Frank model, emphasis is placed on the acting distance of wall lubrication force from the wall. The acting distance is not constant; whereas, it is the function of device scale. After the modifications, the new model is employed to simulate the gas-liquid flow in a Transient Two-Phase Flow (i.e., TOPFLOW) and Multiphase Loop (i.e., MTLoop) apparatus, using the commercial software ANSYS Fluent. The cases with different superficial air velocities and different ratios of length to diameter were studied. The results indicated that calculated data for the radial gas holdup and radial bubble velocity magnitude were in good agreement with experimental data. The modified model can be used to predict the water-air flow at room temperature in bubble columns in which the coalescence and breakup of bubbles are not obvious.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.