Abstract

In this paper, the autonomous navigation of six-crawler machine is studied, and a visual tracking control method based on machine vision for fuzzy proportional–integral–derivative control of six-crawler machine is proposed. The steering principle of the six-crawler machine and the matching relationship between the steering angle and the speed of each crawler are introduced, and the control system is described in detail. Besides, the mathematical model for the unsteady steering is introduced to analyze the influence of deflection angle on the steering trajectory of the six-crawler machine. The image processing algorithm is programmed by LabVIEW software. After the image is fitted by graying, binary, filtering, edge detection, and least square method, the navigation line-fitting curve is obtained. The fuzzy proportional–integral–derivative control algorithm is programmed in the control system to control the six-crawler machine to drive along the navigation line. In order to obtain reasonable control parameters, a virtual prototype model of a six-crawler machine is established. In the CoLink module, the control algorithm of a six-crawler machine is established, and the co-simulation is carried out. By analyzing the simulation results, the control parameters of the fuzzy proportional–integral–derivative controller of the six-crawler machine are established. In order to verify the control effect of the visual tracking control system of the six-crawler machine, a physical prototype of the six-crawler machine is constructed and tested. The results show that the visual tracking control system of the six-crawler machine can complete the preset functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.