Abstract

The vibrational energy dissipation processes of the electronic ground states of p-nitroaniline and N,N-dimethyl-p-nitroaniline have been studied by transient grating spectroscopy with subpicosecond laser pulses. The rise time of the acoustic signal produced by the energy dissipation process of the hot ground state molecule was monitored. The acoustic signal was analyzed by an equation including the acoustic damping. The solvent temperature rise times in various solvents have been determined. The acoustic signals of azulene in previous papers [Y. Kimura et al., J. Chem. Phys. 123, 054512 (2005); 123, 054513 (2005)] were also reanalyzed using this equation. The temperature rise times in all cases are longer than the vibrational energy relaxation times of the solutes determined by the transient absorption measurements. The difference is discussed in terms of the energy transfer pathways from the solute to the solvent. We concluded that both the hydrogen bonding between the solute and the solvent and the lower frequency modes of the solutes play important roles in determining the energy transfer pathway from the solute to the solvent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call