Abstract

Turning chips of zirconium alloys are produced in large quantities during the machining of alloy rods for the fabrication of the end plugs for the Pressurized Water Reactor (PWR) fuel elements parts of Angra II nuclear reactor (Brazil – Rio de Janeiro). This paper presents a study on the search for an efficient way for the cleaning, quality control and Vacuum Arc Remelting (VAR) of pressed zirconium alloys chips to produce a material viable to be used in the production of the fuel rod end plugs. The process starts with cutting oil clean out. The first step in this process consists in soaking a bunch of chips in clean water, to remove soluble cutting oils, followed by an alkaline degreasing bath and a wash with a high-pressure flow of water. Drying is performed by a flux of warm air. The oil free chips are then subjected to a magnet in order to detect and collect any magnetic material, essentially ferrous, that may be present in the original chips. Samples of the material are collected and then melted in a small non consumable electrode vacuum arc furnace for evaluation by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRFS) in order to define the quality of the chips. The next step consists in the 15 ton hydraulic pressing the chips in a die with 40 mm square section and 500 mm long, producing an electrode with 20% of the Zircaloy bulk density. The electrode was finally melted in a laboratory scale modified VAR furnace located at the CCTM–IPEN, producing 0.8 kg ingots. The authors conclude that the samples obtained from the fuel element industry can be melting in a VAR furnace, modified to accommodate low density electrodes, allowing a reduction up to 40 times the original storage volume, however, it is necessary to remelt the ingots to correct their composition in order to recycle the original zirconium alloys chips. in a process to reduce volume and allow the reutilization of valuable Zircaloy scraps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.